Econ 8105 MACROECONOMIC THEORY
DYNAMIC PROGRAMMING FOR MACRO

Prof. L. Jones

Fall 2010

These notes are a condensed treatment of the chapters in SLP that
deal with Deterministic Dynamic Programming used in conjunction with the
treatment of the single sector growth model and its generalizations. More or
less, this is Chapters 4-6 of the book along with some of the Mathematics

that is used in those sections.

Read S.L.P.

e Chapters 1 and 2 for background (skim 2.2)
e Skim Chapter 3 — Math.

e We will cover Chapter 4/parts of Chapter 5/parts of Chapter 6 in detail.
Reread Chapter 3 as needed as we go along.

Go for:

1. Simple version.
2. Time stationary rep.
3. Global Dynamics (special cases)

4. Numerical procedure.



From what we’ve seen so far, an ADE allocation can be found as the solution
to the maximization problem of the form:

P(k):  max u(@ 0)
(¢,@,k, L)
s.t. Ct + x4 S Ft<kt, nt)
Fir < (1 —90)ki + 2y
Tt + gt S ﬁt
ko = k fixed

non-negativity.
Assume that 7; is independent of ¢ and F; is independent of t.
eg., m=n=1, F(k,n) = Ak*nl~=

Let:

F(E; n, ') denote the set of feasible sequences for (¢, z, k, 1, £) given 7, F' and
%. That is,

Ct+ Ty S F(k’t, nt) Vi
k’t+1 < (1 — (S)kt + x¢ Vit
ng + gt S n Vit
ko = k
and write
(5, 5%;@% = (Co,xo,ko,no,go; CNhfb 7Z1)

in period 0, and period 1,2... decisions, respectively.
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NOTICE:

@7 kn,0) € T(k;n,t)
& co + xo < F(ko,no)
ki < (1 —0)ko+ o
no+4<n
and ko = A

AND (81,%1,,61) EF(kl,ﬁ,F)

That is,
The constraint set for P(/l%; n, F') has a RECURSIVE structure — There is

a "t = 0 component” and a ”continuation component” and, moreover, the
”continuation component” looks ”just like” the original set!
Problem: Give a Max Problem where this isn’t true!

Note: This requires infinite horizon for it to be true!

Indeed, note that I'(k; 7, F') is of the form

{(5» %jf/aﬂz) | (ctze, ke, bime) € /F\(kt—l)}

(c,x, k' ln) | c+x < F(k,n)
EF<(1-0)k+x
c+n<n

non-negativity



i.e., constraint set is a time stationary function of the “state variable” k;.

Other Problems Like This

If don’t cut the tree at period ¢, then (Tree-height at £)=(1 + height at
t—1),1i.e., k, =1+ k1. Consider also k; = 0 forever if you do cut the tree.

If you cut it at height k, you get payoff B'u(k;).

Let 0 if don’t cut
et 1 =
! 1 if cut

Then the problem can be written as:

max Z ﬂtu(xt, k)
x € 40,1}

l{?t+1 == (1 - .Tt)(kt + 1)<1 - X(kt:0)>

1 Outline/Strategy for Tackling These Prob-

lems

Our strategy for solving problems like this is to use a simple fact about
maximization problems over two variables (even if the second variable for
us is an infinite history of all relevant variables). This property is easily
described via the following.

Suppose we have an indexed family of maximization problems, one for
each z € X, P(z). In each of these you have to pick a y = (y1,y2) € Y1 X Y.
So, P(x) is given by:



P(:C) : max u(xvylqu)

(y1,y2)

s.t (x,y1,y2) € A(z), x given.

Here, A(x) C Y; x Y3 is the constraint set for the problem P(z). Assume
that there is a solution for this problem for each x € X given by (y;(z), y3(x))
and define V*(z) to be the value of utility at the solution:

V(@) = ule, yi (), y5()).

This is the description of the problem in its 'raw’ or sequential form.
Alternatively, for each = € X, define
Ai(z) ={y1 € Y1|TFya € Yo, 5.8, (2, y1,92) € A}
and for each y; € Ay(z) define
Ao(z,y1) = {y2 € Yal(z,41,92) € A}
Next, consider the following Two Step Procedure for solving P(z) :

Step 1: For each (z,y;) such that y; € A;(z), solve the maximization
problem P?(z,y;) given by:

P2('£U7y1) HZ&X U(I7y1ay2)
s.t. Yo € No(x, 1)
(x,y1) fixed

Assuming a solution exists for each choice of (z, y;), this defines a function
(or correspondence if there are multiple solutions), y»(y1, z). Define U%(z, y;)
by:
U2, 91) = u (2,1, ya(x,91))
Step 2: For each x € X define the maximization problem P!(z) by:

Pl(x) max UQ(x,yl)

Y1

s.t. y1 € Aq(x)
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Assuming a solution exists for each choice of x, this defines a function (or

correspondence if there are multiple solutions), y;(z). Define U'(zx) by:
Ul(x) = U, 01 (2)) = u (2, 91(x), ya(, 41(2))) -

Then, you can show that:
L. V*(z) =UYz) = U¥(z,y1(x)) = u(z,y1(x), ya(z,y1(2))) for all z € X.

2. (yf(z),y3(x)) = (y1(x),y2(y1(x)) for all x € X assuming unique solu-

tions.

3. V*(z) = Ul(x) for all z € X even if max is replaced by sup and no

solution need exist.

4. Something like 2) holds even if the solution is NOT unique.

Adding More Structure

Suppose in addition that the continuation problems are also like the orig-
inal problems, i.e., if each P! is in the class P, and that the some additional
structure is placed on both the OBJ and Constraint Sets:

1. Assume that Y7 = X and Yo = X x X x ..... so that y; is an x and s

is an infinite string of a’s.
2. Assume that u(x,y1,y2) = h(x,y1) + Bu(ys, y2) for some function h.

3. Assume that there is some I'(z) such that (z,y1,y2) € A(z) if and only
if y € I'(z) and yo € ['(y1).

Then, under these conditions, the problem from time 1 on, i.e., the prob-

lem that we called P?(x,y;) above



1. does not depend on z: x enters the problem only as a constant added
to the objective function and hence can be dropped (indeed the term

h(x,;) can be dropped), and
2. is equivalent to the problem P(y;).

Because of this, we can rewrite the ’result’
V*(l‘) = Ul(x) = U2<C(],y1<5(])) = U(I7y1('r)7 yQ(xvyl(x)))

V*(@) = h(z,91(2)) + Bulyr, y2(y1)) = b (z, 9:1(2)) + BV*(y1)

Note that our Growth Model IS of this form:
Constraint problem is already this way., i.e., I'(k;) = F(?{:\)

Something we can do to u(c, Z) to make this happen?

P(%) : max ZB u(ct, by)

{(ct,zt,ke,ne,le)}

ct—l—xtgF(kt,nt) t=0,...
ke < (1= 06k + xy t=0,...
n+ 4 <m t=0,...

ko = k.

0 < B < 1, u increasing, concave, etc.

P(k: 5:\0,%0,?1\0,!70,/]50) t Iax ZB u(ct, 4r)

,,,,,

st. g+ < (kt,ﬁt) t=1,...
kivi < (1=0)ki+az t=1,...
b < m ot=1,.
ki = k= (1—5)k0+§0



1. For any choice of (¢y, 7o, EO, o, ZO) This gives a new max problem.
2. Can drop BOU(CO, o) from OBJ and factor out ( from remaining.

3. New max problem depends only on %1.
This problem is identical to P(k;)!

It is a time stationary-recursive Max problem!

~ -~

Let g(k) —new k, i.e., the k; from the solution to P(k). Then solution to
overall problem SHOULD be ko =k, ki = g(k), ks = g(k1) = g (g(%)) etc.
That is, the optimal solution SHOULD have the form if (E, ki,ko...), is the

solution for the problem starting from kq = 7<:\, then (ki, ks ...) is the optimal

solution for the problem starting from kg = k;.

What does this say about V (k) = sup 3. fu( )...? It follows that:

V(k) = supu(co,fo) + BV (K
otz < F(k6)

Ko< (1—0)k+
no+4y < n

In words, the last term on the RHS of the OBJ is what you get from t = 1

on if you have to have optimality from ¢ = 1 and given that you start at &'.



2 The Canonical Form

Given the discussion above, we will examine indexed families of optimization

problems of the form:

(SP) or (SP(x)) sup Y B'F (x4, w441)

{@er1}20 =0
s.t. Ti41 € F(It)

To € X given.

I'cX.
z): X =X
F' = return function
I' = Feasibility correspondence.. What is possible for z;,, given that the

state at ¢ is x;?
Let V' (z¢) denote this sup (possibly +o00, —00), (by convention, sup, .y H(x) =
—00).

Example:

1-sector growth model, inelastic labor supply.

P(ko) max Z Blu(cy)

Ct + Tt S F(k‘t,ﬁ)
s.t. Fipr < (1 —6)k + x4
k‘o fixed

What is F here?



o = F(

= F(k;,7n) — (kt+1—(1—5)k‘t)
(
(

|
T

ktu ) ( ) kt+1
= G kt7kt+1) Gl > O,GQ < 0.

What is I' here?

ki1 < Fke,m) + (1 —0)ky

For this choice of F' and I" we can rewrite the 1-sector growth model in

canonical form:

maXZ B'u (G ke, kiyr))
lf kt+1 S P(kt) - {kt+1 ‘ kt+1 S F(kﬁt,ﬁ) + (]. - (5)]%}

Example:
Tree Cutting Problem - P(k).

Problem - Rewrite TCP in this form.

Example

1 sector growth model, elastic labor supply.
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P(ky) max Z Bru(cy, by)

e+ xy < Fke,ny)
kipr < (1—0)ky + oy
n+4; <m

ko fixed.

s.t.

Problem: rewrite this as SP in canonical form.

Example: 1 sector Growth Model, Multiple Capital Goods, inelastic labor
supply.

P(ko) maxZBtu(ct)
cot+x+- g < Fkw, - kg, ng)
Kjerr < (1 —8;)kje + a0

s.t.

]{3017 ey kOJ given

Problem: Rewrite this as SP in canonical form.

Example: Same as above, but u(cy, £;).
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Example: Two sector neo-classical growth model, inelastic labor supply
max Z Bru(c,)

et < F(ketyner)

2y < F¥(kgpy Mgt
kipr < (1—0)ky + oy
ket + kpr < Ky

s.t.

Nt + Mgt S n

ko fixed

Problem: Rewrite in Canonical Form.
Problem: Add elastic labor supply.
Problem: Add multiple k’s, one sector each.

Can’t move z across sectors?
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Example: 1-sector Model, adjustment costs in k, inelastic labor supply

maxz Bru(c)

st. qg+x < F(kyn)
kipr < (1 —0)k + g(x)
ko fixed.
g(0) = 0, increasing and strictly concave.

INSERT FIGURE HERE
In this example, if you try to make too big a change in &, you lose efficiency.
Problem: Write in CF.
Problem: Add, elastic ¢, multiple sectors.

Problem: Other forms? Adjustment on n?

F(kta nt) - g(nt - ntfl)
Ty

kt—i—l = (1 — 5)]% + g (l{_)?

t
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Example:

(k, h)—model, inelastic £77

s.t.

\

max Z Bru(cy)

et < FO(kety Pty ner)
Tp < F¥ (g, Pt e
The < F"(knt, hit, it
K1 < (1= 0n)ke + ps
hiv1 < (1 —0p)hy + xpy
ho, ko fixed.

Net + Npt + Nt <70

ket + kit + ke < Fy

het + hie + b < hy

Here, h is interpreted as ’knowledge’ of the individual.

Problem: Write in CF

Example:

s.t. ¢
Tt

Tht
Kty

his1

maxZﬁtu(ct, 4)
F(kets 2et)

F* ke, 2rt)
F™"(knt, 2nt)

(1= 0p) ks + gy
(1 =0p)he + xpy

VAN VAN VAN VANRN VAN
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Effective Labor supplies:

Zy < MC(ne, hy)
Zet < M (ngt, hy)
T < M"(npg, hy)
Kot + kot +kne < Ky
Net + Nyt + g1 + 0 < 7
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Example: Family Labor Supply

> 8" Iy (epe ) + At (ot L)
F(kt7 Nyt + nmt)
(1 - 5)’% + x4

IN

Cft + Cmt + Ty

IN

ket

Nyt +€ft

IA
3
~

IN
3
3

Mot + Lt

Add home good?

Example: Fertility

ZﬁtU(Nt,Ct/Nt)
st. ¢+ X, +0Ny, < NF(K,/N,7)
K < (1-90)Ki+ X,
Ky fixed.

IN

ETC.
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Back To General Development
Sequence Problem for the Initial Condition = — SP(z)

Find V/(x) which is defined by:

V(z) = sup ZﬁtF(%,fEtH)

(w0.-) 15
s.t. Ti41 S F(mt)Vt

o =2 fixed.
Functional Equation Problem:

Find a function v(z) satisfying:
() = sup,er [F(2,9) + Bo(y)]
That is, this is an identity in x!
Fundamental Theorem of Dynamic Programming (More or less):
(a) If V(z) solves SP(x) Yz, then V(z) satisfies FEP.
(b) If v(X) satisfies FEP then v(z) solves SP(x) V.
N. B. This can’t be quite true as stated because:

v(r) = —o0
v(z) +oo

always solve FEP., but won’t necessarily solve SP. So, some conditions
have to be added to (b).
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3 The Details

Let A= {(z,y) e X x X |y e '(x)}
This is the graph of T'.
INSERT GRAPH HERE.
Let
7(T) = {(vo,...,) € X*®° | 2y € I(xy) Vt > 0,20 =T} .
m(xg) is the feasible set for SP(x).
Assumption 4.1 ['(z) # ¢, Vze X.

Problem: Show that Assumption 4.1 = 7(x¢) # ¢ VYV € X.
Assumption 4.2 Vi, € X and all € 7(z),

lim Y7 B F (x4, w11)  exists.
n—oo

N.B. We allow +o0o, —oco as possible limits, i.e.,3 a € R = RU{—o00, +o0},
such that

lim > B'F(zy, 2041) — a.

n—00 {0

INSERT GRAPH HERE.

Sufficient conditions for Assumption 4.2
SC1A4.2 |F(x,y)| < M, V(z,y) and 0<p@<1l
Problem: Prove SC2A4.2 — A4.2 holds.

SC2A4.2 Vo€ X,3 60,¢,0<c¢<00,0<6<1/8 such that
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7€ m(xy) = Flo,1141) < cb'.

Problem: Prove SC2A4.2 —> A4.2

For each n, define u,, : 7(x¢) — R by
U (T) = 3 B'F (w1, 2011)-
=0

i.e., the partia_l sum.

And define u(z) = lim u,(z).

n—oo

By A.4.2, u: m(xy) — R.
Finally, define V* : X — R by:
V*(z) = sup u(T).
zenm(zo)
What it means for V'* to solve SP:
Then V* is a well-defined function satisfying:

a. If |[V* (x0)| < oo then

V* (z0) > u () VT € m(xg)

and

Ve > 0, AT en(rg) =
u(Z) > V*(xg) —e.

V*(20) = +oo, Fi"em(x)=

c. If V*(xy) = —o0 then u (%) = —o0 VT € 7 ().
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That is V* divides X into 3 mutually exclusive and exhaustive subsets.

X = AuBucC

V*(z)] < oo0— reA
V*(z) = 4o0— reDB
Vi(z) = —oo0— rel

What it means for v* to solve FE.
a. If |v* (zg)] < oo then
v (x0) > F (x0,y) + Sv* () Vy € I'zg (4)
and Ve >0, 3Jy &I (zg) such that
v* (20) < F(20,y) + Bv*(y) +¢. (5)
b. If 2* (zo) = +oo, Fy* € I'(x0) such that
lim {F (a0, 4%) + 80 (1)} = . ©

c. If v* (zg) = —oo then F (z¢,y) + fv* (y) = —o0, Yy € T (z¢).
Thus, as above, if v* is a solution to FE it divides X = AU BUC such that:
< 0 —TE fl

|
) = 4+o0o—z€B
)

= —oo—>x€é.

Goal
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Theorem A. If V* solves SP then v* solves FE.
Theorem B. If v* solves FE then v* solves SP.
Thatis - A=A, B= B and C = C.

Most of the difficulties are with sup instead of max, and the possibility that
V* and/or v* = oo for some/all xy’s.

Lemma 4.1 Suppose A4.2. Then Vz, € X and VZ € 7 (z0)
u () = F (zo, 21) + Pu (T')

where z! = (z1,...).
Proof. Under 4.2. Vzo € X, Vi € 7 (),

u(z) = JLIIQOZﬁtF (4, Tp41)
0

n—oo

= lim F (zg,z1) + 532&2@17 (T11, Ter2)
=0
= F(zg,z1)+ 5 -u(@") .

Where the last equality comes from the definition of u (Z').
Theorem 4.2 Under A.4.1, and A.4.2 if V* solves SP then V* solves FE.
That is:

Vee X, V*(x)= sup F(z,y)+ V" (y).

y€el'(z)

Intuition/Discussion of Proof:

First, for this first part it’s useful to do an intuitive version of the proof
and then go through the technical details. YOU SHOULD DO THIS YOUR-
SELF FOR THE OTHER PARTS OF THE PROOF!
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To start, suppose |V* (z)| < oo for a particular z. For example, V* (z) =
7.218. And what we want to show is — at this same x, the valued 7.218 solves
the FE. In other words,

7.218 = sup e F (2,y) + BV (y) -

What would it mean to show this? First, it means that 7.218 is an upper
bound for the RHS of this equation. Second it means that there is no other,

smaller upper bound for the RHS.

To see that 7.218 is an upper bound for the RHS, proceed by contradic-

tion. That is, there is some y* € I'(z) with:
F(z,y*) + V*(y*) > 7.218.

From here, we proceed to construct a feasible plan beginning from x, Z,
for which u () > 7.218. To do this, first construct a plan from y*, § which is
feasible (7 € 7(y*)) and gets really close to V*(y*). Then, it can be checked
that & = (x,y*,7) € m(x) and by construction

u(z,y*,9) = u(Z) is really really close to F(x,y*) + V*(y*) > 7.218.

But this is a contradiction that 7.218 is an upper bound for the problem
SP(x).

The rest of the proofs are similar intutitively. And all that is left is to fill

in the €’s and ¢'s.
Back to proof:

Suppose |V* (z)| < oo for a particular x.

Need to show
V*(x) = sup F(x,y)+ 6V (y)

y€el'(z)
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since V* () < oco. This is the same as showing
Vi(z) 2 F(a,y) + BV (y)  Vyel(z) (4A)
and Ve > 0, Jy € I' (z) =

Vi) —e < F(z,y) + V" (y) (5A)

To show (4A):
Let z; € T'(z) and choose ¢ > 0. By the definition of V* (), 37' =
(x1,...) € m (1) such that
u(zt) > V*(z1) —e.
Since z; € T' (z) and &' € 7 (x1), it follows that (z1,7') € 7 (z). Thus,

from (2) and Lemma 4.1

v (z)

v

u(xy,2") = F (z,21) + Bu (3")
> F(x,z1)+ BV (21) — Se.

Since ¢ was arbitrary,
V*(z) > F (x,21) + V" (21) Vi, € I' (2)

follows.
Note—implicit: If |V*(z)| < oo and y € I' (x) then |V* (y)| < co—show
this.

To show that (5A) holds at z, choose ¢ > 0. From (3) 37 € 7 (x), T =
(x,x1,.) such that

V*(x)

IN

u(Z)+e
= F(z,21)+pu (') +e

where 7' = (z1,...). The equality comes from Lemma 4.1.
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But # € 7 (z) = z; € I' (z) and by the definition of V* (z,), it follows
that

Ve (x)

IN

F(z,21) + Bu (z') +¢
< F(z,z)+pV*(21) +¢

That is x; € ' (z) is a choice of y that will work in (5A).
If V* (z9) = oo then

3z% € 7 (20) such that u (z¥) — co. Since 2} € I (20) , Vk, and u (2*) —
o0,

u (%) = F (zo, %) + Bu (%) < F (zo, %) + BV* (2}).

It follows that (6) holds for the sequence y* = 2%, and =} € T () , Vk.
If V* (xy) = —o0 then

(7)  w(@)=F (xox1)+ Bu(z') = —oc0 VT € 7 (x0).

Since F (z,y) € R, V(z,y), it follows that u (#') = —oco, Vo, € T (),
Vil € 7 (xg).

Hence, V* (1) = —o0 Vx; € T (29).

But, since F' is real valued and 5 > 0, (7) follows from this. This com-
pletes the proof.

Theorem 4.3 (Theorem B) Suppose A.4.1, A.4.2 hold. If v* is a solution
to FE
AND

(8) lim, .o 8"v(z,) =0 VT e€m(rg) Vo€ X.
Then v* = V*.

What does it mean to show this?

Proof.

1. If v* (x9) < oo, then (4) and (5) hold. It’s enough to show that (2)
and (3) hold.
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First (2):
T em(rg) = 11 €T (20) so (4) = Va € 7 (x9),

v

F (.I’O, .%'1) + BU* (-Tl)
> F(wg,11) + BF (21, 7) + 0" ()

v* (o)

IV

Unp, (j> + ﬁn—HU* (*TnJrl)

SO

v* (20) > limu, (Z) + lim 8" 0" (2,41) .

So from (8),
v* (z9) > u(Z) VT € 7 (x0),

i.e. (2) holds.
To see that (3) holds, fix ¢ > 0. We want to find an & € 7 () such that
u(z) > V*(z) —e.

Choose 0; € R such that »_.°, B, < /2.

Since (5) holds (at all 27), [show if it holds at xg, it must hold at x;7],
we can find z; € I'(xg), 2 € ['(x1),... so that v* (x;) < F (x4, 2411) +

pv* (x441) + 041 Then, (z9,x1,...) € T (z0) by construction, and

vi(zo) < D BF (@) + 870 () + (614 4 B70n1)
t=0

<y (2) + B (24) + /2.

Thus, using (8),
v* (z0) < up (Z) 4+
for all n sufficiently large (large enough so that 8" ™v* (z,41) < €/2).
Taking limits gives
v (20) < u () +e,
i.e. (3) holds for this 7.

v* (xg) = —o0 case, not possible by (7) and (8). Why?
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If v*(x9) = oo, i.e. (6) holds, want to show Jz* € 7 (z;) such that

U (5:’“) — 0.

As a first step, we establish the following Claim:

Claim. There exists an n, co > n > 0, and (z, ..., z,) such that:
iz el (), Vi=1,...,n
ii. v* () =00, Vt=0,...n
i, v* (2,01) <00, Vo, €T (z,)

Proof. Suppose not. le., suppose that for Vn, and V(zg,z7,...,2) such
that 2 € I (a},,) V¢, a2, € T (27) with v* (27,,) = co. Then consider
the sequence & = (zo, 2}, 23, ...). By construction, 27, € I’ (z27!), Vn and
v* (z7,,) = oo, Yn. But then "v* (z72,,) -+ 0. Contradicting (8).

So, choose such an n and such a sequence z, € I'(x,_1). Fix an A > 0.

Since v* (z,,) = 00, by (6) we can choose 77, € T (z,) such that

n—1

F (2n,a500) + 00" (240) 2 57" [A+1 - ZﬂtF (@, wpa) |- ()

t=0

A

A1) < o0, we can find 77, such that

Also, since v* (w
i.
ffﬂ em (mﬁﬂ)
ii.
u () 20" () — 870, ()

A

Then, by construction, 74 = (xo, ey Ty i’ﬁﬂ) € 7 (xg), and

n—1

U (fA) - ZBtF (w4, 241) + " F (xna xﬁ—kl) + 5" (jé‘H)
t=0

n—1 n—1
> ZBtF (@4, Te1) + BB |A+ 1= ZﬁtF (4, Tr41)
=0 =0
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From * and **
5n+lv* (xﬁ.i_l) +6n+1 [U* (xﬁ.i_l) . 6*(n+1):| — A

Thus V* (zo) > u (2) > A VA = V* () = oo.

This completes the proof of the Theorem.
It follows that there can be AT MOST one solution to FE satisfying (7) since
by Theorem 4.3, every solution satisfying (7), v* satisfies v* (z) = V* (x).

FE is called Bellman’s Equation. Theorems 4.2 and 4.3 < “Principle of
Optimality”.

Problem. Show (8) is necessary.
Problem. Suppose that

1. Vo € X, Jz* (x) such that V*(z) = u(z*(z)) < oo, i.e., there is a

solution and wu is finite at the solution—max = sup.
2. Vo € X ,Jy* (x) solving maxycre [F (z,y) + BV* (z)].
Prove Theorem 4.2 in this case.

Problem. Suppose that v* satisfies FE, that (1) holds, (2) holds for v* and

(3) v* is bounded. Prove Theorem 4.3 in this case.

Problem. Suppose T' < oo.

T
(SP) max Y B'F (w1, 2411)
t=0
s.t. Tip1 € T (2y) t=0,... (2441 = “final rate”).

Define V* = sup as before. And define the FE as before—Are Theorems
(4.2), (4.3) satisfied? If yes prove it, if no show where proofs go wrong.

Plans, Optimal Plans, Policy Rules and Policy Functions.
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T € m(xp) is a Feasible Plan (from x).
T* € m(xg) is an Optimal Plan (from zo) if and only if V* (z¢) = u (Z%).
That is, the sup is attained at the plan z*.

Note: There may be more than 1 given our assumptions so far.
Problem. Give an example with multiple optimal plans.
Optimal plans satisfy BE.

Theorem 4.4. Under A.4.1, A.4.2)if 7* € 7w (x9) is an OP, 2* = (z§, 27, .. .).
Then

V*(x}) = F (x7,27,4) + BV (2},,) t=0,... 9)

2. (2}41,...) is an OP from z;.

Proof. Since z* is an OP, 23 € I' (x) and

V*(zo) = u(Z*) = F (xo,2") + Bu () (10)
> u(Z) = F (2, 11) + Pu (T) Vo € (o) .

In particular, this holds for all feasible plans with z; = x7. Now, (x},29,...) €
7 (23) = (zo,273,...) € 7 (x0)
(since 27 € I' (x0)).
Thus, from (10), V (27, 29, ...) € 7 (x7),
F (zo,27) + pu(T¥) > F (vo,27) + Pu (27, 29, . ..)
SO
u(Z¥) > u(xf, xe,...) V(2] 2,...) € m(x0).
Thus, u (#*') = V* (2%) and (23, 23,...) is an OP from z7 (since we just
showed that it attains the sup.
This proves (1) and (2) for ¢t = 0. Now proceed exactly the same using
induction.
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Converse
Theorem 4.5. Under A.4.1, A.4.2. If 2* € 7 (x0) and

limsup B'V* (27) <0 (11)

t—o00

and (9) holds at this #*. Then V* (z¢) = u (Z*) i.e., * attains the sup.
Proof. Suppose z* satisfies (9) and (11). Then,

Vi) = Flrod) + AV 00
= F(xg,x]) + B[F (27, 25) + V™ (x3)]
= up (&%) + BV (a3)

=, (7)) 4 gV (xzﬂ) )
Taking limits then and using (11) we get

V* (z0) = limu, (Z*) = u (T")
i.e. x* attains the sup so z* is an OP.

Let G : X = X satisfy G (z) C ' (z) ,Vz.
G is called a “policy correspondence”. It is a subset of feasible actions at x.
g: X —X
is a "policy function” if g is a "policy correspondence” AND g () is a
single point for all x € X.
IF & = (wo,...) satisfies z4y1 € G (z;) ,Vt , then T is said to be generated
from z¢ by G. It’s a possible path if you always follow the “policy” G.

Finally, G* = optimal policy correspondence:
G ={yel(x)|V*(z)=F(z,y) + BV (y) } .

Then from Theorem 4.2 and Theorem 4.4:
If 2* is an OP from wg, then z},, € G* (x}) Vt.
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Conversely

If
T* € m(x9) AND
zy,, € G (x7) Vt AND
(11),

then 7* is an OP from x.
So find G*, then x} , € G* (x}) defines the time series of the solution.
Thus, to solve the SP we have the following outline:
1. Find V*.
2. Given V*, find G*
3. Check that (11) is satisfied.
This shows that G* = OP.

In principle one could do this using either SP or FE for (1). But, in practive

it’s easier to do it using FE and this solves (2) at the same time.
Algorithm:
1. Guess VO (z).
2. Solve sup,crey F (z,y) + BV (y).
3. For Vz, define G° (z) = argmax {y € T (z) F (x,y) + 8V° (y)}
4. For all z, define V! by V! (z) = F (z,G° (z)) + BV° (G° (x)).

5. Put V! into step (1) and iterate. — G, V2, ...
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Suppose for some V° and some T we find
Vitt(z)=F (z, GT (z)) + BVT(G (2)) = VT ().
Then, we see that V7 solves FE, i.e., VT = V*! (And GT = G* as well).

Questions.
What if VT — V? Will it still work? (yes)
When will V7T converge at all? Does it depend on V? (under Blackwell’s

sufficient condition, VT — V* independent of starting place).
Next order of business:

1. Make sure this procedure works.

2. Get some properties of V*, G* going for us.

A.4.3. X C R'is convex. I non-empty, compact valued and continuous.
[is Lh.c. if Vo*, Vy* € ' (z*) , V2" — 2*, Jy™ € I' (z") such that y" — y*.
['is wh.c. if V2", Vy™ such that y* € ' (z™) and (2™, y") — (z*,y*) then
y* eI (z%).

' is continuous if both of these hold.

Examples: Enter Graphs Here.
A.4.4. F is bounded and continuous, 0 < § < 1.

Problem. Show that if A.4.3 and A.4.4 then A.4.1 and A.4.2.

1. So SP is well defined.

2. Solutions (V*,G*) of SP and FE are the same. (V* is bounded.)
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If |F(x,y)| <B V x,yEA,then|V*(x)|§% V.

Let C(X) ={f: F = R, continuous, bounded}. Clearly, if V* is contin-
uous, it is in C'(X).

Consider:

1 v(z) = max F(z,y) + fo(y).
For any v € C(X), the RHS of [1] has a solution (maximize a continuous

function on the compact set I'(x)) and it this maximized value is continuous.

Accordingly define the function 7' : C'(X) — C(X)

by if f(x) € C(X), then
(T(1)) (z) = max F(z,y) + fo(y).

Thus [1] is T'(v) = v, i.e., v is a fixed point of T.

Let d(f,g) = sup |f(x) — g(z)].

It can be shown that under metric d, C' is a complete metric space.

Theorem 4.6. If 4.3, and 4.4, then,

1. T has a unique fixed point (which must be V*).

2. And for all Vj € C(X),

7" (Vo) = VFl < 8" Vo = V™| (= 0).

3. The opt. policy corres, G* = argmaxyer) (F(z,y) +V*(y)) is non-
empty compact valued and u.h.c.

32



3.1 Some Math We Need Before the Proof

Fixed Points
S aset, f: 9 — S afunction. S* is called a fixed point for f if f(s*) = s*

i.e., f leaves s* "fixed.” Some f’s have fixed points and some f’s don’t.
INSERT GRAPHS HERE

Brouwer’s Theorem

Let S C R™ be the closed disk with interior, i.e. S = {z € R™ | ||z| < 1}.

Then every continuous fct f : S — S has at least one fixed point.

Results like this are rare! Not true for C'(X).

T:C—C-f—f+1ie,Tf(x)=f(z)+1 Va.
T is a very nice mapping but has NO fixed points.
To get a FP, in general you need strong assumptions.

Contractions and Contraction Mapping Theorem

Theorem 3.2 Contraction Mapping Theorem

If (S, p) is a complete metric space and T' : S — S is a contraction of modulus

B, that is, p(T'(z), T(y)) < Bp(z,y)V z,y € S,
Then,

1. T has exactly one fixed point, s*

2. p(T™(z),s*) < B"p(x,s*). Vn,xes.

Note: T" defines a difference equation on S, i.e.,
s, T(s), T(T(s)) =T?(s), So,81,52, -

We are asking a hard question. When is it true that 7"(sg) — s* V so?
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INSERT GRAPHS HERE.

Completeness
Let X C R™, and define C'(X) = bounded continuous functions from X — R.

Define || f|| = sup [f(z)].
zeX

This is known as the supnorm of f.

Define d(f,g) = ||f — gl| = sup |f(z) — g(x)|. It can be shown that d is
zeX

a metric — that is:

=Y
v

0

d(f,g) = dlg,
d(f,

) s
~—"

+d(f.9) Yfoaf

=
Bt
&
IN

Theorem 3.1 (C(X), ||-||) is a complete metric space.

Theorem 3.2 If (S,p) is complete and 5 C S is closed, then (S, p) is

complete also.

Blackwell’s Theorem

Theorem 3.3 Let z C R’, B(x) be a space of bounded real valued functions
with:

d(f,9) = sup [f(x) = g(@)| = |If — 4l

Let T : B — B satisfy:

(a) V f,g9 € B, such that f(z) < g(z) Vuz, then Tf(z) <Tg(x) Vz,and
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(b) 35 €(0,1) such that, Va >0, VfeB, (T(f+a))(x)<Tf(x)+
Ba Vre X.
THEN, T is a contraction of modulus [.
Theorem of the Maximum:
Theorem 3.6 Let + C R,y C R™,f : X x Y — R is continuous and

I': X — Y is compact valued and continuous.
Then,

(a) h(z) = max f(z,y) is continuous.

y€el'(z)

(b) G(x) = argmaxycr(z) f(z,y) is non-empty, compact valued and u.h.c.

3.2 Back to the Proof of the Theorem

Recall what we want to show:

Theorem 4.6. If 4.3, and 4.4, then,

1. T has a unique fixed point (which must be V*).

2. And for all V5 € C(X),

7" (Vo) =Vl < 5" Vo = V*I (= 0).

3. The optimal policy correspondence, G* = arg maxycr() (F(z,y) + V*(y))

is non-empty compact valued and u.h.c.
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Proof: Given any 1} € C' it follows that

P(X): max F(x,y) + BV(y)

has a continuous objective function and a compact feasible set. So,
(a) Gy, (x) = argmax( ) is non-empty and compact valued.
(b) Gy, () is u.h.c. (Theorem of the Maximum).

(c) V(z) = F(z,Gy(x)) + BVo(Gy, (x)) is bounded and continuous.

Thus, T : C — C from (c), and (3) follows from (a) and (b) at any fixed
point. Thus we need show (1) and (2). These will follow from the Contraction
Mapping Theorem once we show that Blackwell’s sufficient conditions are
satisfied by T

If f(z) <g(z) Vu figel

T(f)(z) max [F(z,y) + Bf(y)]

y€el'(z)

< yréll?é() [F(z,y) + Bg(y)]

(Tg)(z).

(since it is true pointwise, and F' is the same).

If feC,a>0,then

T(f)(x)

max [F(z,y) + B(f + a)(y)]

y€el(z)

= max [F(z,y)+ 6f(y) + Ba]
y€el(z)

(T'f)(x) + Ba.

i.e., BSC are satisfied so 7" is a contraction, so (1) and (2) hold.
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Summary Then:

Theorems 4.3 and 4.6 = V* is bounded and continuous.

Theorems 4.5 and 4.6 = J at least one optimal plan...any plan generated by
G* (since G* # @)) implied.

Problem: Show that F' bounded is necessary for this. How is this true?

4 Properties of V* G*

A4.5 Yy, F(x,y) is strictly increasing in = (but not necessarily in y.)

A4.6 x < 2’ (vector sense) = I'(z) C I'(2).
Theorem 4.7 If A4.3-4.6 hold and V* is unique solution to:

[ () = nax [F(z,y) + B (y)],

then, V* is strictly increasing.

Proof: Let C'(z) be the set bounded increasing functions and let C” be those
that are strictly increasing. C” is a closed subset of C' and hence, it is also
complete under the sup norm. By A4.5 and A4.6, if v € C'(z) = T'(v) €
C"(x), ie, T =C"— C". Thus, the unique F.P. of T is in C"”. To see this,
pick any V € "’ and consider T"(V') € C”. From above, T"(V) — V*— the
F.P. of T. Thus, since C" is closed, V* € C'. But V* = T(V*) and hence,
V*=T(V*)e C" (since T(V) e C" VV ).

A4.7 F is strictly concave.

F@(z,y)+(1-0)("y)) > 0F(x,y)+(1-0)F(,y)
V(z,y),(2,y) € A Ve (0,1).
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Moreover, the inequality is strict if x # z.

A4.8 T is convex—(really graph of I" is convex).

Voe [0,1], Va2 ¢,y >yel(z),y el(a)=
Oy +(1—60)y el (fx+ (1—6)z").

Note: This rules out IRS across z. e.g.,z € R, TI'(x)={y|0<y < f(x)}.
I'(z) is convex Vz, but A is not if f is IRS!

INSERT GRAPH HERE

Theorem 4.8 If A4.3, Ad.4, A4.7 and A4.8 are satisfied, then V* is strictly

concave and G*is a continuous function.

Proof: Let C' = bounded, continuous, weakly concave functions and let C”
= those that are strictly concave. C” is closed in C'. We will show T'(C") C C”.

Suppose V' € C" and g # 2,0 € (0,1), 29 = Oxo + (1 — 0)x1 Let y; € G(x;),
i =0,1, and define yy = Oyo + (1 — 0)y;.

Then by 4.8, yg € I'(xg) for all 6.

Thus,

TV(JZ@)

Vv

F (g, yp) + 8V (yo)  (since yy € I'(2p))

> O[F(zo,90) + BV (y0)] + (1 = 0) [F'(z1,y1) + BV (y1)]
(strict concavity of F, A.4.7, weak concavity of V)

= 0TV (xg)+ (1 —0)TV (1) as desired.

ie, T(C") C C", since ' is closed, it follows that the unique FP of T' € C”.
Since V*, F' are strictly concave, it follows that V x there is a unique solution
to:
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max F'(z,y) + 5V (y)

y€el(z)

that is, G*(z) is a function. Since it is uhc, it is continuous.

4.1 Other Related Results

Convergence of Approximating Policy Functions:
Theorem 4.9 Suppose V; is bounded continuous and concave. Define V,,

and g, by

Vn—i—l = TVn
gn = aIg max F(l’,y) +5Vn(y)
y€el'(z)
Then,
1. gu(z) — g(z) Vx

2. if X is compact, ||g, — g|| — 0.

Differentiability of v

Theorem 4.11 A4.3-44, 4.7, 4.8 and F is C' on int(A), if zy € int(X),
and g(xg) € int(I'(zg)), then V is continuously differentiable at x, and

oV, _oF,
970 zo — Oz, (w0,9,(w0)) "

Proof: Choose a neighborhood of xg, U, such that, g(zq) € int(I'(xg)) for all
zeU.

Define
W(x) = F(x,9(w0)) + BV (g9(z0)).
Then,
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1. W(z) <V(zr) VzeU (since g(zg) € I'(z) Vzel).

3. W is concave and differentiable, since F' is. And, 8V (g(z)) is a con-
stant.

INSERT GRAPH HERE
Thus (Rockafeller) V' is differentiable at z and

ov
aIi

_ow
N 8x0

_OF
(10) aJIZ

To (70,9,(z0))

5 Examples

Examples of closed form solutions are rare. (Well, there are 2 or 3).

Example 1 Full depreciation, Log/Cobb-Douglas.

u = Zﬁtlogct

s.t. o+ ki < AR
Then,
V*(k) =
log A 1 af
A=A —ap) 15 |80~ o)+ {5 loaled)
+Llogk
(1—ap)
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Proof Just show that V* is an fixed point for T'!
This does not give a lot of insight however.

Alternative:
Guess that k' = gi(k) is given by &' = ¢f(k), (constant, savings rate— you
might guess this because k£ T r |, but under log, ¢/ independent of r for
some ¢.)
If correct, this implies that
kivn = of (k) = @Ak VL,
and
et = (1= @) f(ke) = (1 — ) Ak,

Thus,
ki = QAKS, ks = AR} = A(pAK)® = (pA) Tk
ks = @ AKS = @A |(A) kS| = (pA) e g
kt _ (SOA)lJraJr...at’lk(c)vt

Hence,

1+a+... at71 t aQ
@ = (1= Akf = (1=9)A [(eA) " k']
= (1- @) AfpA]rreitepe™
Thus,
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e = Zﬁt10g0t=25t (10% (1 —@)A- [ i)

= Zﬁt{bg [(1=@)Al + (a+ .. —l—a)log[gpA]—l—atHlog(ko)}

1
= Og[(1_5> +10g¢AZBt§:a

+alog(ko) Z(Ba)t

t=0
This uses:
(@t . +aY1-a) = at. . .+a'—a®—ad— . ot
= a—aot! (1—a") so
(1-qa)

Hence,

log(1 — log A log(p A . ; a
u(@p) = (gl(_6;0)+(1§6)—|— (fiwa))zo:ﬁa(l—a)—i—l_aﬁlogko
~ log(1—¢p) logA o 2 S L
S Taoe Taop a2 ;W]
—i—l_ 6logk0
_ log(l—¢) log4 of3 )
T Tu-p ta-p T aoau—ap Y
af
+(1_5)(1_0[ﬁ) log A + (1—0[6) log ko

What is the optimal choice of ¢?
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Juax u(e)

max u(p) where u(p) = log(l—¢)+ % log ¢

11—«

The rest is constants (Note, it had to end up independent of ko, if this guess is
correct otherwise the optimal ¢ would end up depending on &k, = constant ¢

would have to be wrong!)
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FOC

1 B af 1

I—¢  1-afy

1—ap

1—¢p = B .
1-— 1— 1
R I

That is
o' = apf.
So, if a policy of this firm is optional then ¢ = af.

To show that this is in fact optimal substitute ¢* into u (¢) to get:

oy log(1—af) logA [ af }
= Tams taea s
af Q@
—l—(l_ﬁ)(l_aﬁ)log(&ﬁ)—l—1_aﬁlog(kfo).
Thus, if our guess is correct,
. B log A 1 B a
V*(k) = (1—5)(1—aﬁ)+(1—ﬁ) log (1 ab’)—i—l_aﬁlog(aﬁ)
a log k
+1—aﬁ &

and ¢g* (k) = afAk®.

To show that this is correct, it is necessary and sufficient to verify that

V* defined this way is an fixed point of 7', i.e.
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V7 (k) = [log (1 — af) Ak®) + BV™ (aBAK?)]

or equivalently ¢ (k) = afAk® solves

max [log (Ak® —y) + BV* (y)].

0<y<Ak~
Problem. Do this.
Alternative Guess and Verify Strategy:

1. Guess that V* (k) = Dy + D; log k for some choices of Dy, D;.

2. For each Dy, D, find

9Dg,D1 (k> = arg max [lOg (Aka - y) + 6 [DO + D,y log y]] .

0<y<Ak~
3. Use (2) to find
VDO,Dl (k) = log (Aka — 9Dy,D; (k)) + 6 [DO + Dl log (gD07D1 (k))] :

4. Find Dy, D} so that Vp« px (k) = D + D7 log k.

L.e., use this procedure to form an Educated Guess for V*.

5. Verify by showing that Vpx px is a FP of T'.

Example 2:1.-Q Problems
Example 3: Ak Models

Problems
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max Zﬁt log ¢,
s.t. Cc + kt+1 S Ak’? + (1 — 6) k't o< 1.

Guess that V* (k) = By + Bjlogk for some By, B;. What happens

when you “Smart Guess”?

2.
lea
max Zﬁtlt_—a c>0, o#1
s.t. ct + kt+1 S Ak,’?
as above.
3.

maxz A log ¢

1
s.t. ¢+ k’t+1 S A [Oék’f + (1 — Oé) 1,0]/;
p<1l, p#0.

1
(Note: this comes from n, = 1 Vt, F (k,n) = ulak?, (1 —a)n’]r,

u(c,l) =loge+0-log/.

6 Applying the Methods
Growth Model with Inelastic Labor Supply

maXZBtu (cr) (SP)
s.t. ¢ + kt+1 S F (kt, 1) + (1 — 5) kt
Tt > 0 kt+1 2 (]. — (S) k’t Ct 2 0.

46



Assume that non-negativity is not binding and let:

Fk) = F (k1) + (1 — 6) k.

max Z Bhu (cy) (SP)
Cct + kt+1 < f (kt) :
So,
maxz Bu (f (k) — kerr)
s.t. 0<ku <f (kt)
where

Fo= u(f (k) — ki)
I'(k) = [0, f (k)]

States: What is x 7 x; = k; or 2441 = (kiy1, &)

6.1 Assumptions
Utility
ul. 0 < B < 1;

u2. u is continuous;

47



u3. wu is strictly increasing;
ud. wu is strictly concave;

ub. wis C1.

Technology

t1. f is continuous;
t2. f(0) =0, 3 k > 0 such that

k> f(k)y>k Vkel0k].

_ k = max sustainable capital stock.
(k) <k Vke (k o00).

f
f
[INSERT PICTURE HERE]
(Feasibility implies & must fail if ko > k under this condition.)
t3. f is strictly increasing;

t4d. f is weakly concave;

t5. fis O,
FE
V) = e (7 () )+ 6V ).
Let X = [0, k].
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6.2 Results

Then the results from the general case imply under these assumptions: (Not

all assumptions are necessary for all parts).
a) SP <= FE.

b) There is a unique bounded continuous function solving FE, V*, and
G* is non-empty and u.h.c. Thus, Vky € [0, l;:] , 3 (k§, kT, . ..) solving
(SP).

c) V* is strictly increasing.
d) V* is strictly concave, G* = g* is a function that is continuous.

e) If g* (k) € (0, f (k)), then V* is differentiable at k € (0,k) and V* (k) =
U (f (k) =g (k) f' (k).

f) If f'(0) = oo, U'(0) = oo, then 0 < g* (k) < f(k) Vk € [0,k].
(Inada Conditions)

Characterizing ¢+ :
Recall that g* solves

max U (f (k) —y)+ BV (y).

0<y<f(k)

FOC and ENV are:
U (f (k) —g" (k) = BV (g (K)) . (FO)

VI (k) = U (f (k) —g" (k) f" (k). (Env)

49



g) From FOC suppose k is increased. ko — ky with k; > ko. If g* (k1) <
9" (ko) then f (ko) — g (ko) < f (k1) —g" (k1) (since f(k1) > f(ko)).
Thus, from the concavity of U:

U'(f (ko) = g" (ko)) > U'(f (k1) — g" (k1))

Thus, using the FOC
V7 (g" (ko)) > V7 (g" (k1)) -

Thus, since V* strictly concave, ¢g* (ko) < ¢* (k1), contradiction. Thus,
g* is strictly increasing.

h) Since V* concave,

kT g (k)1
= V7(g" (k)|
= U'(f(k)—g" (k)|
= (f(k)—g" (k)1 (U is concave),
i.e.,c" (k) = f(k)—g" (k) is increasing in k too!

[INSERT PICTURE HERE]
This result is a bit of an oddity... this is just a 2 variable budget

problem, and we’ve just shown that both demand curves are increasing
in Wealth. Why can’t either ¢ or k£’ be an inferior good?

Steady States ie. g(k*) = ¥*

i) g(0) = 0 — feasibility

50



)

If k* = g (k*) use FOC and the ENV to get

U'(f (k*) = k*) = BU' (f (k*) = k*) [ (k")

]‘ / *
5= 1.

1
If f/(0) = oo, f'(00) < 3 (e.g. f'(00) = 0). There is at least one
strictly positive solution to this. If f is strictly concave, there is exactly

one.

I F (6 = = then g (k*) = k.

5
From Env:
VI (ET) = U (f (k") = g" (k7)) f' (k")
BV (K =U' (f (k") = g" (K)) -
From FOC:
U'(f (k) = g" (k7)) = BV (g7 (F)) -
Thus

pVT(ET) = BV (g™ (k"))
— k= g (k)

since V* is strictly increasing.

Global Dynamics:

First a little Math Result:
If W (2) is strictly concave and differentiable then (W' (2) — W' (2)) (z — 2) <

0 with equality < z = 2.
Proof.

o1



z < 2= (W (2)=W'(2)) >0, (z—2)<0
> 2= (W(2)—-W' (%)) <0, (z—2)>0.

z2— 0.

z

z

Thus, since V* is strictly concave and differentiable on (0, lﬂ, z=k,z2=g(k)

gives

[V (k) =V (g" (k)] e —g" (B)] <0 Wk e (0,F] *)

with equality iff &k = g (k).

From ENV

VY Ry = U (f (k) — g (K)) f' ().
From FOC

V(g (k) = %U’ (f (k) — g" (k)
Thus * is

[U' (f (k) = g" (k) f" (k) — %U’ (f(R) =g (R)| [k —g" (F)] <0 (%)

equality < k = g (k).

or

equality < k=g(k). (1)
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1
Thus, since f' (k*) = 3 = k* = g (k*) as desired. But we already showed
that 3! positive stationary point so that k # g (k) for k # k*, k > 0. Thus

ORI O
ik ke
LTk < b = (k) > % = [f’(k)—%} S 0= (kg (k) < 0 =

k < ¢g* (k), and since ¢ is monotone, k < k* = k < g (k) < g (k*) =k,
g (k) € (k, k).

2.6k > k= fl(k) < % = {f’(kz)—%] <0=(k—g*"(k) >0=
k > g* (k), and since g is monotone k > k*, k > g (k) > g (k*) = k¥,
g (k) € (K, k).

[INSERT PICTURE HERE]

Proposition. In the growth model, there are 2 steady states k =0, k = k*
1
(f(k:*) = E) If ko >0, ko < k", kfy > kf Vtand kj — k*. If k" <k <
k... ki, <kfandkf — k*.
[INSERT PICTURE HERE]

Does it always work this nice? NO!

Theorem 6.1 (Boldrin & Montrucchio) Let X C R be compact, g : X —
X, C% Then 3F, 3, and T such that ¢g* = g (and T (z) = X).
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