In class exercise

Q1.
A. C: chicken sandwich, F: French Fries

Budget constraint: $6 \mathrm{C}+2 \mathrm{~F} \leq 18$
B. $P(C)=6, P(F)=2$, C : chicken sandwich quantity, F: French Fries quantity

U(C): Utility of chicken sandwich, U (F): Utility of French Fries
MU(C): Marginal Utility of chicken sandwich, MU (F): Marginal Utility of French Fries
$\mathrm{MU}(\mathrm{C}) / \mathrm{P}(\mathrm{C})$: Marginal Utility of chicken sandwich per dollar
MU (F)/P(F): Marginal Utility of French Fries per dollar
Method 1: PRICINPLE OF RATIONAL CHOICE(not recommended!). This will not give your correct answers all the time, unless you have a continuously differentiable utility function. (Don't worry if you don't know "continuously differentiable".) You need to use method 2 to check it. By the principle of rational choice,

$$
\mathrm{MRS}_{\mathrm{FC}}=\frac{\mathrm{P}_{\mathrm{F}}}{\mathrm{P}_{\mathrm{C}}}=\frac{2}{6}=\frac{1}{3}
$$

Method 2: GO THROUGH THE TABLE. This method is quite messy, but it will always give you the correct answer.
Based on the conditions, we have the following table.

\mathbf{C}	$\mathbf{U}(\mathbf{C})$	$\mathbf{M U}(\mathbf{C})$	$\mathbf{M U}(\mathbf{C}) / \mathbf{P}(\mathbf{C})$	\mathbf{F}	$\mathbf{U}(\mathbf{F})$	$\mathbf{M U}(\mathbf{F})$	$\mathbf{M U}(\mathbf{F}) / \mathbf{P}(\mathbf{F})$
$\mathbf{0}$	$\mathbf{0}$			$\mathbf{0}$	$\mathbf{0}$		
$\mathbf{1}$	$\mathbf{1 5}$	15	2.5	$\mathbf{1}$	$\mathbf{1 1}$	11	5.5
$\mathbf{2}$	$\mathbf{2 5}$	10	1.67	$\mathbf{2}$	$\mathbf{2 1}$	10	5
$\mathbf{3}$	$\mathbf{3 1}$	6	1	$\mathbf{3}$	$\mathbf{3 0}$	9	4.5
$\mathbf{4}$	$\mathbf{3 4}$	3	0.5	$\mathbf{4}$	$\mathbf{3 7}$	7	3.5
$\mathbf{5}$	$\mathbf{3 6}$	2	0.33	$\mathbf{5}$	$\mathbf{4 2}$	5	2.5
				$\mathbf{6}$	$\mathbf{4 7}$	5	2.5
				$\mathbf{7}$	$\mathbf{5 1}$	4	2
				$\mathbf{8}$	$\mathbf{5 3}$	2	1
				$\mathbf{9}$	$\mathbf{5 5}$	2	1
				$\mathbf{1 0}$	$\mathbf{5 6}$	1	0.5

In order to maximize the total utility, you need to maximize the utility you obtain from each dollar you spend, i.e. try to maximize (MU/P) of each dollar when you decide whether to buy chicken sandwich or French fries. Follow the following steps:
a. Decide where to spend the first dollar of $\$ 18$: chicken sandwich or French fries? (See Figure 1) Because $\mathrm{MU}(\mathrm{F}) / \mathrm{P}(\mathrm{F})=5.5>\mathrm{MU}(\mathrm{C}) / \mathrm{P}(\mathrm{C})=2.5$, so buy French fries first. You spend $\$ 2$ buying one unit of French fries, then you have $\$ 16(=\$ 18-\$ 2)$ left.
b. Then decide where to spend your next dollar. (See Figure 2) Because $M U(F) / P(F)$ of the second unit French fries $=5>\mathrm{MU}(\mathrm{C}) / \mathrm{P}(\mathrm{C})=2.5$, so buy second unit of French fries. You spend $\$ 2$ buying one unit of French fries, then you will have $\$ 14$ (=\$16-\$2) left.
c. Repeat the same steps as above. After you bought $6^{\text {th }}$ unit of French fries, you have $\$ 6$ (=\$18-\$12) left. Then you determine where to spend your next dollar. (See Figure 3) Because $\operatorname{MU}(\mathrm{F}) / \mathrm{P}(\mathrm{F})$ of the $7^{\text {th }}$ unit French fries $=2<\mathrm{MU}(\mathrm{C}) / \mathrm{P}(\mathrm{C})=2.5$, so buy one unit of chicken sandwich. You spend $\$ 6$ in buying one unit of chicken sandwich, then you have $\$ 0$ (=\$6-\$6)

In a word, the consumption bundle to maximize your utility is 1 unit of chicken sandwich and 6 units of French fries. The Marginal utility of $1^{\text {st }}$ unit of chicken sandwich is 15 , the Marginal utility of $6^{\text {th }}$ unit of chicken sandwich is 5 . Then,

$$
\mathrm{MRS}_{\mathrm{FC}}=\frac{\mathrm{MU}_{\mathrm{F}}}{\mathrm{MU}_{\mathrm{C}}}=\frac{5}{15}=\frac{1}{3}
$$

(We see that method 2 and method 1 have the same answer in this problem, but you will see they are different in the next problem.)

\mathbf{C}	$\mathrm{U}(\mathbf{C})$	$\mathrm{MU}(\mathbf{C})$	$\mathrm{MU}(\mathbf{C}) / \mathrm{P}(\mathbf{C})$	\mathbf{F}	$\mathrm{U}(\mathbf{F})$	$\mathrm{MU}(\mathrm{F})$	$\mathrm{MU}(\mathrm{F}) / \mathrm{P}(\mathrm{F})$
$\mathbf{0}$	$\mathbf{0}$			$\mathbf{0}$	$\mathbf{0}$		
$\mathbf{1}$	$\mathbf{1 5}$	15	$\mathbf{2} 5)$	$\mathbf{1}$	$\mathbf{1 1}$	11	$\mathbf{5} 5 \mathbf{5}$
$\mathbf{2}$	$\mathbf{2 5}$	10	1.67	$\mathbf{2}$	$\mathbf{2 1}$	10	5
$\mathbf{3}$	$\mathbf{3 1}$	6	1	$\mathbf{3}$	$\mathbf{3 0}$	9	4.5
$\mathbf{4}$	$\mathbf{3 4}$	3	0.5	$\mathbf{4}$	$\mathbf{3 7}$	7	3.5
$\mathbf{5}$	$\mathbf{3 6}$	2	0.33	$\mathbf{5}$	$\mathbf{4 2}$	5	2.5
				$\mathbf{6}$	$\mathbf{4 7}$	5	2.5
				$\mathbf{7}$	$\mathbf{5 1}$	4	2
				$\mathbf{8}$	$\mathbf{5 3}$	2	1
				$\mathbf{9}$	$\mathbf{5 5}$	2	1
				$\mathbf{1 0}$	$\mathbf{5 6}$	1	0.5

Figure 1

\mathbf{C}	$\mathrm{U}(\mathbf{C})$	$\mathrm{MU}(\mathrm{C})$	$\mathrm{MU}(\mathrm{C}) / \mathrm{P}(\mathbf{C})$	\mathbf{F}	$\mathrm{U}(\mathrm{F})$	$\mathrm{MU}(\mathrm{F})$	$\mathrm{MU}(\mathrm{F}) / \mathrm{P}(\mathrm{F})$
$\mathbf{0}$	$\mathbf{0}$			$\mathbf{0}$	$\mathbf{0}$		
$\mathbf{1}$	$\mathbf{1 5}$	15	$\mathbf{2} .5 \mathbf{)}$	$\mathbf{1}$	$\mathbf{1 1}$	11	5.5
$\mathbf{2}$	$\mathbf{2 5}$	10	1.67	$\mathbf{2}$	$\mathbf{2 1}$	10	5
$\mathbf{3}$	$\mathbf{3 1}$	6	1	$\mathbf{3}$	$\mathbf{3 0}$	9	4.5
$\mathbf{4}$	$\mathbf{3 4}$	3	0.5	$\mathbf{4}$	$\mathbf{3 7}$	7	3.5
$\mathbf{5}$	$\mathbf{3 6}$	2	0.33	$\mathbf{5}$	$\mathbf{4 2}$	5	2.5
				$\mathbf{6}$	$\mathbf{4 7}$	5	2.5
				$\mathbf{7}$	$\mathbf{5 1}$	4	2
				$\mathbf{8}$	$\mathbf{5 3}$	2	1
				$\mathbf{9}$	$\mathbf{5 5}$	2	1
				$\mathbf{1 0}$	$\mathbf{5 6}$	1	0.5

Figure 2

\mathbf{C}	$\mathrm{U}(\mathbf{C})$	$\mathrm{MU}(\mathbf{C})$	$\mathrm{MU}(\mathbf{C}) / \mathbf{P}(\mathbf{C})$	\mathbf{F}	$\mathrm{U}(\mathbf{F})$	$\mathrm{MU}(\mathrm{F})$	$\mathrm{MU}(\mathrm{F}) / \mathrm{P}(\mathrm{F})$
$\mathbf{0}$	$\mathbf{0}$			$\mathbf{0}$	$\mathbf{0}$		
$\mathbf{1}$	$\mathbf{1 5}$	15	$\mathbf{2} 5 \mathbf{5}$	$\mathbf{1}$	$\mathbf{1 1}$	11	5.5
$\mathbf{2}$	$\mathbf{2 5}$	10	1.67	$\mathbf{2}$	$\mathbf{2 1}$	10	5
$\mathbf{3}$	$\mathbf{3 1}$	6	1	$\mathbf{3}$	$\mathbf{3 0}$	9	4.5
$\mathbf{4}$	$\mathbf{3 4}$	3	0.5	$\mathbf{4}$	$\mathbf{3 7}$	7	3.5
$\mathbf{5}$	$\mathbf{3 6}$	2	0.33	$\mathbf{5}$	$\mathbf{4 2}$	5	2.5
				$\mathbf{6}$	$\mathbf{4 7}$	5	2.5
				$\mathbf{7}$	$\mathbf{5 1}$	4	2.2
				$\mathbf{8}$	$\mathbf{5 3}$	2	1
				$\mathbf{9}$	$\mathbf{5 5}$	2	1
				$\mathbf{1 0}$	$\mathbf{5 6}$	1	0.5

Figure 3
C. $P(C)=3, P(F)=2, C$: chicken sandwich quantity, F: French Fries quantity

Method 1: (not recommended!)
Method 2:
Based on the conditions, we have the following table.

\mathbf{C}	$\mathbf{U}(\mathbf{C})$	$\mathbf{M U}(\mathbf{C})$	$\mathbf{M U}(\mathbf{C}) / \mathbf{P}(\mathbf{C})$	\mathbf{F}	$\mathbf{U}(\mathbf{F})$	$\mathbf{M U}(\mathbf{F})$	$\mathbf{M U}(\mathbf{F}) / \mathbf{P}(\mathbf{F})$
$\mathbf{0}$	$\mathbf{0}$			$\mathbf{0}$	$\mathbf{0}$		
$\mathbf{1}$	$\mathbf{1 5}$	15	5	$\mathbf{1}$	$\mathbf{1 1}$	11	5.5
$\mathbf{2}$	$\mathbf{2 5}$	10	3.33	$\mathbf{2}$	$\mathbf{2 1}$	10	5
$\mathbf{3}$	$\mathbf{3 1}$	6	2	$\mathbf{3}$	$\mathbf{3 0}$	9	4.5
$\mathbf{4}$	$\mathbf{3 4}$	3	1	$\mathbf{4}$	$\mathbf{3 7}$	7	3.5
$\mathbf{5}$	$\mathbf{3 6}$	2	0.67	$\mathbf{5}$	$\mathbf{4 2}$	5	2.5
				$\mathbf{6}$	$\mathbf{4 7}$	5	2.5
				$\mathbf{7}$	$\mathbf{5 1}$	4	2
				$\mathbf{8}$	$\mathbf{5 3}$	2	1
				$\mathbf{9}$	$\mathbf{5 5}$	2	1
				$\mathbf{1 0}$	$\mathbf{5 6}$	1	0.5

Similar to above, follow the following steps:
a. Decide where to spend the first dollar of \$18: chicken sandwich or French fries? (See Figure 4) Because $\mathrm{MU}(\mathrm{F}) / \mathrm{P}(\mathrm{F})=5.5>\mathrm{MU}(\mathrm{C}) / \mathrm{P}(\mathrm{C})=5$, so buy French fries first. You spend $\$ 2$ buying one unit of French fries, then you will have \$ 16 (=\$18-\$2) left.
b. Repeat the same steps as above. After you bought $2^{\text {nd }}$ unit of French fries, you have $\$ 14$ (=\$18-\$4) left. Then decide where to spend your next dollar. (See Figure 5) Because $\mathrm{MU}(\mathrm{F}) / \mathrm{P}(\mathrm{F})$ of $3^{\text {rd }}$ unit French fries $=4.5<\mathrm{MU}(\mathrm{C}) / \mathrm{P}(\mathrm{C})=5$, so buy one unit of chicken sandwich. You spend $\$ 3$ buying one unit of French fries, then you have $\$ 11(=\$ 14-\$ 3)$ left.
c. Then decide where to spend your next dollar. (See Figure 6) Because MU (F)/P(F) of $3^{\text {rd }}$ unit French fries $=4.5>\mathrm{MU}(\mathrm{C}) / \mathrm{P}(\mathrm{C})$ of $2^{\text {nd }}$ unit chicken sandwich=3.33, so buy $3^{\text {rd }}$ unit of

French fries. You spend \$2 buying one unit of French fries, then have \$ $9(=\$ 11-\$ 2)$ left. By the same token, you buy $4^{\text {th }}$ unit of French fries and have $\$ 7(=\$ 9-\$ 2)$ left.
d. Then decide where to spend your next dollar. Because $\mathrm{MU}(\mathrm{F}) / \mathrm{P}(\mathrm{F})$ of $5^{\text {th }}$ unit French fries $=2.5<\mathrm{MU}(\mathrm{C}) / \mathrm{P}(\mathrm{C})$ of $2^{\text {nd }}$ unit chicken sandwich=3.33, so buy $2^{\text {nd }}$ unit of chicken sandwich. You spend $\$ 3$ buying one unit of French fries, then you will have $\$ 4(=\$ 7-\$ 3)$ left.
e. Then decide where to spend your next dollar. Because MU (F)/P(F) of $5^{\text {th }}$ unit French fries $=2.5>\mathrm{MU}(\mathrm{C}) / \mathrm{P}(\mathrm{C})$ of $3^{\text {rd }}$ unit chicken sandwich $=2$, so buy $5^{\text {th }}$ unit of French fries. You spend $\$ 2$ buying one unit of French fries and have $\$ 2(=\$ 4-\$ 2)$ left. By the same token, you buy $6^{\text {th }}$ unit of French fries and have $\$ 2(=\$ 2-\$ 2)$ left.

In a word, the consumption bundle to maximize your utility is 2 unit of chicken sandwich and 6 units of French fries. The Marginal utility of $2^{\text {nd }}$ unit of chicken sandwich is 10 , the Marginal utility of $6^{\text {th }}$ unit of chicken sandwich is 5 . Then,

$$
\mathrm{MRS}_{\mathrm{FC}}=\frac{\mathrm{MU}_{\mathrm{F}}}{\mathrm{MU}_{\mathrm{C}}}=\frac{5}{10}=\frac{1}{2}
$$

(Note this is different from $\frac{\mathrm{P}_{\mathrm{F}}}{\mathrm{P}_{\mathrm{C}}}=\frac{2}{3}$)

\mathbf{C}	$\mathrm{U}(\mathbf{C})$	$\mathrm{MU}(\mathrm{C})$	$\mathrm{MU}(\mathrm{C}) / \mathrm{P}(\mathrm{C})$	\mathbf{F}	$\mathrm{U}(\mathrm{F})$	$\mathrm{MU}(\mathrm{F})$	$\mathrm{MU}(\mathrm{F}) / \mathrm{P}(\mathrm{F})$
$\mathbf{0}$	$\mathbf{0}$			$\mathbf{0}$	$\mathbf{0}$		
$\mathbf{1}$	$\mathbf{1 5}$	15	$\mathbf{5})$	$\mathbf{1}$	$\mathbf{1 1}$	11	5.5
$\mathbf{2}$	$\mathbf{2 5}$	10	3.33	$\mathbf{2}$	$\mathbf{2 1}$	10	5
$\mathbf{3}$	$\mathbf{3 1}$	6	2	$\mathbf{3}$	$\mathbf{3 0}$	9	4.5
$\mathbf{4}$	$\mathbf{3 4}$	3	1	$\mathbf{4}$	$\mathbf{3 7}$	7	3.5
$\mathbf{5}$	$\mathbf{3 6}$	2	0.67	$\mathbf{5}$	$\mathbf{4 2}$	5	2.5
				$\mathbf{6}$	$\mathbf{4 7}$	5	2.5
				$\mathbf{7}$	$\mathbf{5 1}$	4	2
				$\mathbf{8}$	$\mathbf{5 3}$	2	1
				$\mathbf{9}$	$\mathbf{5 5}$	2	1
				$\mathbf{1 0}$	$\mathbf{5 6}$	1	0.5

Figure 4

C	U (C)	$\mathrm{MU}(\mathrm{C})$	$\mathrm{MU}(\mathrm{C}) / \mathrm{P}(\mathrm{C})$	F	$\mathrm{U}(\mathrm{F})$	MU(F)	$\mathrm{MU}(\mathrm{F}) / \mathrm{P}(\mathrm{F})$
0	0			0	0		
1	15	15	(5)	1	11	11	5.5
2	25	10	3.33	2	21	10	5
3	31	6	2	3	30	9	(4.5)
4	34	3	1	4	37	7	3.5
5	36	2	0.67	5	42	5	2.5
				6	47	5	2.5
				7	51	4	2
				8	53	2	1
				9	55	2	1
				10	56	1	0.5

Figure 5

\mathbf{C}	$\mathrm{U}(\mathbf{C})$	$\mathrm{MU}(\mathbf{C})$	$\mathrm{MU}(\mathbf{C}) / \mathrm{P}(\mathbf{C})$	\mathbf{F}	$\mathrm{U}(\mathrm{F})$	$\mathrm{MU}(\mathrm{F})$	$\mathrm{MU}(\mathrm{F}) / \mathrm{P}(\mathrm{F})$
$\mathbf{0}$	$\mathbf{0}$			$\mathbf{0}$	$\mathbf{0}$		
$\mathbf{1}$	$\mathbf{1 5}$	15	5	$\mathbf{1}$	$\mathbf{1 1}$	11	5.5
$\mathbf{2}$	$\mathbf{2 5}$	10	3.33	$\mathbf{2}$	$\mathbf{2 1}$	10	5
$\mathbf{3}$	$\mathbf{3 1}$	6	2	$\mathbf{3}$	$\mathbf{3 0}$	9	$4.5 \mathbf{7}$
$\mathbf{4}$	$\mathbf{3 4}$	3	1	$\mathbf{4}$	$\mathbf{3 7}$	7	3.5
$\mathbf{5}$	$\mathbf{3 6}$	2	0.67	$\mathbf{5}$	$\mathbf{4 2}$	5	2.5
				$\mathbf{6}$	$\mathbf{4 7}$	5	2.5
				$\mathbf{7}$	$\mathbf{5 1}$	4	2
				$\mathbf{8}$	$\mathbf{5 3}$	2	1
				$\mathbf{9}$	$\mathbf{5 5}$	2	1
				$\mathbf{1 0}$	$\mathbf{5 6}$	1	0.5

Figure 6

Some extra exercise

This problem could be more difficult if it is given as follows: $P(C)=3, P(F)=2, C$: chicken sandwich quantity, F: French Fries quantity. Please find out the consumption bundle that maximizes total utility and the corresponding $\mathrm{MRS}_{\mathrm{FC}}$. (Try to do it by yourself and check the answers to see whether you master this method or not.)

\mathbf{C}	$\mathbf{U}(\mathbf{C})$	$\mathbf{M U}(\mathbf{C})$	$\mathbf{M U}(\mathbf{C}) / \mathbf{P}(\mathbf{C})$	\mathbf{F}	$\mathbf{U}(\mathbf{F})$	$\mathbf{M U}(\mathbf{F})$	$\mathbf{M U}(\mathbf{F}) / \mathbf{P}(\mathbf{F})$
$\mathbf{0}$	$\mathbf{0}$			$\mathbf{0}$	$\mathbf{0}$		
$\mathbf{1}$	$\mathbf{1 5}$	15	5	$\mathbf{1}$	$\mathbf{1 1}$	11	5.5
$\mathbf{2}$	$\mathbf{2 5}$	10	3.33	$\mathbf{2}$	$\mathbf{2 1}$	10	5
$\mathbf{3}$	$\mathbf{3 4}$	9	3	$\mathbf{3}$	$\mathbf{3 0}$	9	4.5
$\mathbf{4}$	$\mathbf{3 7}$	3	1	$\mathbf{4}$	$\mathbf{3 7}$	7	3.5
$\mathbf{5}$	$\mathbf{3 9}$	2	0.67	$\mathbf{5}$	$\mathbf{4 2}$	5	2.5
				$\mathbf{6}$	$\mathbf{4 7}$	5	2.5
				$\mathbf{7}$	$\mathbf{5 1}$	4	2
				$\mathbf{8}$	$\mathbf{5 3}$	2	1
				$\mathbf{9}$	$\mathbf{5 5}$	2	1
				$\mathbf{1 0}$	$\mathbf{5 6}$	1	0.5

Answers:

a. Repeat the same steps of problem C until step e.
b. Now you have bought 2 chicken sandwiches and 4 French fries, and $\$ 4$ dollars left. Because $\mathrm{MU}(\mathrm{F}) / \mathrm{P}(\mathrm{F})$ of $5^{\text {th }}$ unit French fries $=2.5<\mathrm{MU}(\mathrm{C}) / \mathrm{P}(\mathrm{C})$ of $3^{\text {rd }}$ unit chicken sandwich $=3$, so buy $3{ }^{\text {rd }}$ unit of chicken sandwich. You spend $\$ 3$ buying one unit of chicken sandwich and have \$ $1(=\$ 4-\$ 3)$ left. You can buy nothing more and the utility of your last $\$ 4$ is 9 (which is $M U(C)$ of $3^{\text {rd }}$ unit of chicken sandwich). Since you haven't used up all you budget in this consumption bundle (let's call it Choice 1), you have another choice that clears the budget: buy two more units (i.e. $5^{\text {th }}$ and $6^{\text {th }}$) of French
fries. Then the utility of your last $\$ 4$ is $10\left(=5+5\right.$, which is the sum of $\mathrm{MU}(\mathrm{F})$ from $5^{\text {th }}$ and $6^{\text {th }}$ unit of French fries). This utility is bigger than that of choice 1 .

Hence, the consumption bundle to maximize total utility is 2 chicken sandwich and 6 French fries, and $\$ 0$ left.

$$
\mathrm{MRS}_{\mathrm{FC}}=\frac{\mathrm{MU}_{\mathrm{F}}}{\mathrm{MU}_{\mathrm{C}}}=\frac{5}{10}=\frac{1}{2}
$$

